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!STIN~TING ~‘BE INTENSITY OF A POISSON PE)CESS Ti

G. S. Watson
Th’ine.ton Zbtiu.rsity

1. Introduction.

Ther. is an immens and increasing literature on point

processes , especially Poisson processes in which the in-
tensity is a function 1(t) of a scalar parameter t, usually
time. Summaries are given in Cox and Lewis (1966), Lewis
(1972), 1975). There are many motivations. Lewis has often
been concerned with times of breakdown of computers. My own
interest wan aroused by two problems—the effects of the

environment on the deaths per day in a large city and a
discussion of wildcat oil strikes in Alberta. The latter was

merely a numerical example in a paper by Clevenson and Zidek
(1975) but it suggested that this topic would be appropriate
for this Symposium. Eoievor , our discussion will be
theoretical—-we will speak of events, not deaths or strikes——

and its aim is to show the .iutplicity and unity of a number
of statistical and math~inatical methods.

If the chances that an event occurs or does not occur in
a smaller interval. (t,t+dt) are given by 1(t)dt, and
1 — l.(t)dt , respectively, independently of whit happened

before t, then the number of events N(t) in (0,t) is said

to follow a non-honx~geneous Poisson process (N.H.P.P.). The
numbers of events in non-overlapping intervals are independent

and have Poisson distributions whose means are the integral.
of A Ct) over the relevant time intervals. Classical examples
ar. d•aths du. to horse kicks in the Prussian Army and clicks
of a Geiger Counter.

If th. times of events are marked on a time axis , they
will be dsns•at, on th. average, where 1(t) is greatest.
In this respect, 1(t) is uk . a probability density. One

can show that if n events occur in (0,1’), then the times of



the events may be treated as a random s~~~le from a 2.

probability distribution with density

f(t) — 1(t)/f 1(t) dt . (1.1)
0

Given a set of data consisting of th . successive times of
events from an N.B.P.P. , the statistician viii wish to esti .
mate the function 1(t) and perhaps test some hypotheses
about it. In some circumstances, the form of A (t) may be
given and th. problem reduced to estimating come paramet~ws
in the formula for 1(t) .

Given a random sample from eon. distribution, precisely
the sam. problems arise—-estimating its density or parameters
in a formula for it.

in both problems, the data er. often grouped to begin
with or later for convenience--deaths per day, strikes per
month. The matheaaticnl difficultie. of estimating 1(t) ar.
greatly reduced b~’ dividing the time axis into int.rvals of
equal length 6. We will start with such data. Clevenson
and Zidek discussed very similar topics in continuous time
and were essentially forced by difficulties to make discrete
approximations later.

The problem of estimating a function A Ct) , 0 ( t ( 1’ or
the function I

~
, t — 0,1,2 N-i is clearly quite distinct,

given a finite amount of data, from the more usual problem of
estimating a f w  parameters. We wil.1 use the total mean
square error to assess the quality of the estimator, i.e.,
we will want an .sti,nator ~ that makes

N—i

~~ 

— A~ )~ (1.2)

small. We will further consider a measure of smoothness of
the sequence £

~ 
and r.quir. it to be small too, on the

grounds that the true sequence A~ is not rough, namely

_ _ _ _ _ _ _ _  _ _ _  - 

* 

5~~~~~(4P~~~)
2 

(1.3)



3.

. ~~ere is the p-tb differenc. of the £
~ 

sequence.
By combining thes. two measures of variability, we will

have something to optimize. It will turn out that the be.t’
estimator depend. upon the unknown sequence so that, in
practice, on. needs to put in one ’s intuition. While this
is f amiliar in time con es analysis , it comes as surprise
to som. people since such results ace concealed in elementary
statistics by a.s”~ 4~ g a pa’aiaetric form. More. familiar is
our restriction to a class of estimators linear in the
co~ints of events.

Sometimes it is realistic to assume that 1(t) is itself .
a random function. Thus, we will have two cases——fixed and
random functions. Since 1(t) is often the signal that some—
thir~g is pr sent , it is often referred to as the signal,
rather than as the function.

Of coure. , for th. statistical analyses of particular
point processes , the N.R.P.P. model may not be appropriate.
It is beyond our scope to consider the general problem. Bow—
ever , in Section 6, we briefly mention another model. In
Section 7, some idea. for simpler and more exploratory
analyses are suggested.

2. A Tim. Series App~oath to the Fixed S4gna l. Case.

Suppose we have the niizaber of events in N successive
intervals and that these are denoted by n0, n1, ..., with
mean values lo, 1~, .. ., ~~~~ which we may think of first as
constants——a fixed signal . Since they are integrals of
1(t) over intervals of length 6 , if 1(t) is a smooth func-
tion , the A ’. will behave regularly, a~d be smoother than
the ne’s. Therefore, it is reasonable to consider a moving
avereg. estimator of 1~ given by

-, z.
At ~~ 

aknt_k . (2.1)

To avoid negativ, estimate., the ak would usually be taken j
as non-negative. Since a constant record ought to be equal
to it. estimate , on. usua lly supposes 1 k — 3. Then the

- —-- ~~ -—  -~~~~ 
_ _



4.
form a discrete probability distribution. In the

absence of other id..., it would be syinaetnic around zero ,
its support, determined by K, would be large if A

~ 
is a very

smooth function , small if it is not. It is fairly standard
to call a filtered version of the n~ series, and the set
of ak’s a filter. It is clear that smoothing reduce. the
variance but increases the bias .

To find an optimal filter, one might ask for the filter
which minimizes the average mean square error

N—i 2
~ ~

1t — (2.2)

where, for this section we regard the Ar’s as constants and
we make no assumptions about the ak’s. However, one cannot
calculate ~~ for t’s such that (2.1) calls for ne’s with t
outside 0, ... , N-i. To overcome this, we put the n~ and A

~equally spaced around the circumference of a circle. It ii
then natural to identify 

~N 
with n0, 

~NI~] 
with n1 etc., ~~~

with 
~N l  etc. The functions rib’ 1~ ’ ~~ 

then are de-
fined for all integer, and they have period N. If we define

2 w)
— — , j — 0 , l , . .. , N— l (2.3 )

N

exp iw~t also has period N. Multiplying (2.1) by exp iw~t
and adding over t from 0 to N-i , we find

— A(w~)n(wj) (2.4)

where

*

— 
~ 
It exp iw~t, *

A(ii~) — ak 
,~P i..~k, (2.5)

N— i
— 

~t 
CXP iljt. 

.—— - —*.—. - - — — - - —-—. ———— - ——— — ——.—— . ..
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where we make no assumptions about K Since

N—i (N if j—O
.xp io4t — (2.6)

t—o ‘ (0 if j—l,...,N—1

we can verify that 
*

A

A — — ~ A (w ~ ) exp —io4t (2.7)
~ N O  .‘ .1

and

l N ~1 A 2I A~ 2~~~— I I A ( w ~ ) I  (2.8)
0 N O

with similar formulae for any other function of period N.
Thus

N—l a l N l ~~I — At) 2 
— — I IA (Wj) —O N O

1 N—i
— — I IA (0j)n(0~) — A (w~)I

2 
. (2.9)

N O

Hence, the criterion (2.2 ) may be rewritten : find A (w ) so
that

- K ~~IA(o~)n (w~) — A (W j ) 1 2 
— mm I (2.10)

The j—th term in th. left—hand side (l.’h.a.) of (2.10) is

IA(o~)I
2EIn (o~)I

2 
—

— A o ~)~~~ o.~)1(w~ + A(v~)I
2 
. (2.11)

Nov -

U—i
— ~ K (n~) sx~ io~t — A (Wj) ~ (2.12)

_ _ _ _ _ __ _  _ _ _ _ _ _  _ _  - -
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Eln (w~)I
2 

— B

— I I ~(n~n~,) exp io~ (t—t’) .

N—i
— I 1t + IA (o~)1

2 (2.l~)0

since the n are independent for distinct t, En — A ,. and
B nt — it + • Now (2.11) may be rewritten as

2 En(w4)~~(w4) 
2

Eln (04)l A(w 4 ) - _ _ _ _ _ _ _ _

2 JEn(w .)~ (w .,)I 2
+ 11(04)1 — 3 -

~~ (2.14)
EIn (w~)l

so that every term in the sum (2.10) is minimized if we
choose

I A (w.)
— — -

~~ (2.15)
N~1 1t + lX(w~)I

2

giving (2.10) a minimum value of

N—l

N—i
I —- 11(04) 

2 
• (2.16)

j — O 1—3

~ 
1t + IA (W j)I

The optimal filter, defined by (2.15) , has the following
properties. tie note that 0 ~~ A(O j ) ~ 1, all J. Since

is real, ak — •—k (i.e., the filter is
syuva.tzic about zero ) :

— - - —‘——— —~ — - ————-—— - — - —.—-— - — - —- - — —.- - - —- —~~~— —  - -
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For

1 1—1
— — ~ M W )  exp -ikw4,

N O

1
— — I k(w~~ ) exp
U

— — 
~ 

A(o_ 4) exp —i (-k)w ,,
N 1

• a_k

Since — A (O), (2.15) gives (Il t — 1(0) > 0)

1(0) 2

Z a k —  21(0) + 1(0)

so that for all filters considered here, there is a downwards
bias. Finally, since A(w~) — A(W..j) A(wN_j)~ 

it will be

convenient to arrange that N — 2K + 1 or K — (11—1)12.

If A~ — A , t — O , . . . , N — 1 , then X ( w ~ ) ~ 0 unless i — 0

when it is

N—i
I —~~~~~
0

so that

(11) 2
MO) — , A(o4)  a 0, j — l,...,N— l .

NA + ( N X )

Hence, th ak sequence is constant , a1 say, and equal to
A(O),’N. Thus, N a

~ 
+ 1 as NA~~ so that the downward bias

disappears.
By contrast, if A~ — A for all t except t0 when A

~ 
— 1+6

with 6 very large, then 0

________________________-- —*——————--*—*- - .— --
~~~~--- - -———-— —.- - * - — - - - -~~~~~~ -- - - — —---——-- - - - - -— -— .—-—



e.
( U A + 6  if 3.0 ,

— (2.17)
(d .exp io~e0 if j~O ,

so that
* 

(11+6)2
2 a j _ 0  -

(NA + 6) + (NA + 6)
—

J 
62

2(NA + 6) + 8

If 6 > NA , h(W j ) = 1 for all ~ nnd

(1 , k — O ,
• 

a k I O  
, k~~~0.

Given th. signal in thi process, this is very reasonable—one
would not want to smooth at all since only one A~ is out of
line. It is important to note that the optima], filter i~
unaffected by t0. It will pick up this signal just as well
wherever it is, i.e., the filter is time-invariant with
respect to the position of the signal.

This is true in general since moving the signal on
time units is the same here as multiplying A(w~) b~ ex~ —jot0
and A(O j ) is unaffected since it depends only on the modulus
of

Finally, the oo~~utation of th. time domain filter coef-
ficients given k(wj ) can be done by using the Fast Fourier
Transform to calcula te

l i—i
— — I A(~j) xp —io4k . (2 18)
N j 0

Equally, given some idea of Àt~ it can be used to calculate
the A(o~) which will be needed to obtain the appro~i’~at.
A(o4). Naturally, in practice , th. ideal filter cannot be

.1

used for the estimation of the quantity it depends on. In - , - 
-

recurring problems, or in the testing or detection problems,
discussed in Section 4, this is possible.

— - -
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The circular device used above is an often exploited
mathematical trick to make the mathematics easy. It will

only lead to trouble if the ak’s do not fall off to zero -

rapidly as Iki increases. The two examples show when we may

expect it to work.

3. The Case of a Random 1(t) .

It was suggested in Section 1 that in many problems 1(t)
should be taken as a rando~i function. In this case to the
expectation in (2.2) and so (2.10) should be added another
expectation over all 1(t) . The analysis is otherwise the
seine. Looking at (2.11) , (2.12) , and (2. 13) . we need. to
evaluate

B 11(04)1
2 and B I

A A

If A C t )  is a second—order stationary process in con-
tinuous time , then will be second-order stationary in

discrete time. As we cannot with grouped data do more than
study the 1~ process, we will only make assumptions about it.
These are the following:

K At A

Cov(At, 1t+•t~ ~(r) . fl p(t) I < —

1 ’
f($) — — I p ( r )  exp ir $ ,

2w —

A t 
— A — j  et t  dZ(~), (3.1)

— 

~w 
e~

’
~~ f($)dp,

B dZ(~) — 0,A
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K dZ(,)dZ(,’) — 0 , 5 ~‘ 5’ ,
A

B ~dZ ($) ~2 
— f(5)d5

A

These are the basic relations and quantities for such a

process. f(5) is called the (pQwer) spectral density of the
process. Readers unacquainted with this theory need only

regard the integral formula for A~ - A as an expression for
this deviation from zero as a sum of sinusoidal oscillations
with uncorre]ated amplitudes whose average magnitudes vary

•
with the frequency as described by f($), as seen in the last
three expectations. The fact that the Fourier series for
f($) has coefficients proportional to the covariances p ( t )
will not be important here.

Then

— A
~ 
exp ii~~t

N—]. ii N—].
A exp iW4t + f ~ exp(i(5+w4)t)dZ(5)0 — t O  -I

So

J 1 0 iN5
1(0) — NA + J

~ l
— L~ ~ — •

i(++wj ) dZ( $,) , ~‘ 0 .

Hence

B 1(0) — I NA
A

E A (o ) — 0 , j g’ 0
A

- —



1].

— 
iN5 2

B 11(0)1
2 

— N A + J f($)d5, (3.2)
A —it l — e ~~

11 — e~~~~
’
~~J~ 

2

~ lA ( c &~) l~ 
a 

~~~~~ ~~~~~~~~~~ ~~~~~~~ 
f(~)d5. (3.3)

The multiplier of f($) when divided by 2irN in these last two

integrals is called the Fej& kernel, i.e.,

iNS iN~ 
2

1 1 — er 1 e — e
( 5 ) — —  a—

2wN 1 - c  21rN 
—

e 2 - e  2

2
sin —

. (3.4)
2wN 

~~~ 2

It may be shown that g($) has an integral from -it to it of

unity and that it resembles more and more as N-Pa) a Dirac
delta function with singularity at 5 = 0. The same is true

of g(5+wj) except that the peak is mcved to ~~~
Thus, for large N, (3.2) and (3.3) become approximately

EIA(0) 1
2 

~ N
2A 2 + 2nN f(O) ~ N

212 )
(3.5)

EIA (w~)I : 2wN f(w~) P

so that the analogue of (2.14) here reads

N2A 2 
2 

N2A 2
(NA +N 212) A(0) — +N 212 —

NA + Nc’ N A + N A

_ _ _  

_ _ _ _  _ _
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and

2tNf(w ) 2
(NA + 2itN f(o~)) k(oj ) — + 2wN f(w~) —

NA + 2irN

— 

2wN f()~~~
NA + 2irN f(w~)

so that for large N

A(0) 1

2w f ( w4) . (3.6)
A(ii~ ) : . .  -‘-‘ A + 2 w f(w ~)

Sinc. f(5) has period 2w and is symmetrical about 0, it
is symmetrical about it. it the realizations of are smooth ,
on the average f ( $)  will be larger near the origin and
smaller away from it. Thus, the interpretation of this
filter is exactly as before.

4. Invariant Testing.

Watson (1974) studied the problem of detecting a peak of
unknown position in the intensity function . Both the situ-
ations, time, of events given and counts in equal intervals
given , were discua sed . The first case bias reduced to testing
for uniformity on a circle. To make the correspondence to
testing probability densities for uniformity clearer, the
data were divided by T to fit on a circle of unit perimeter.
If the times are then x1. •.X~~. the locally most powerful
invariant tests of Beran (1968) have the form: resect when
TM is large where

2 M 2
— j fr ~p l 2 ; lj i~1 

.2irinixij (4.1)
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and the cm are the Fourier coefficients of g(x), a density
with period unity. The family of alternatives i.
(1 — e) + eg(x — 5) where 5 is any number in (0 ,1) and c is
small. An alternative form of (4.1) is

1 1
— — f (t(g(x~ — 5) — 1}12

d*
M O

1 1
— N J ( — Zg(x~ — 5) — 1J 2d5 (4.2)

0 H

where

N 1 g(x~ — 5)
1

is a kernel-type estimator of the density of x, a test sug-
gested by Watson (1967) on intuitive grounds. The t*St TM
is invariant with respect to the position of 5 of the
alternative density g(x — 5). In our case,

— 5))

J )(t)dt)
0

where A(s) has been made to have period T. If only the
counts in N equal intervals

j j+ .L
(- ,— )
N N

for j a ..., N—I. are given, the natural approximation to
(4.1) and (4.2) i.

• 2 N—i 2tij 2
— 

I 
~ N I

where

_ _ _ _ _ _ _  
_ _ _ _ _  _
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- 
11(1 — exp —2tia/N)

c— c  ~ a > O .  (4.4)
a 2wia

Then (4.3) was shown to reduce to

N—l i • ~~2 2vimj 2

— ~ ~ + N 112 } — 
~
n4 exp (4.5)

a-l(t—O JM  N

because of aliasin g. Experiments with a special case of
called UN

2 (Watson (1974)) with N 20, showed that the null
distributions of and TM’ were practically the same.

Thus, for invariant testing, often little will be lost
by grouping and the optimal statistic (then (4.5)) is easily
computed using the F.?.? . In the notation of this paper ,
(4.5) is

N—l 1A (W m ) 1 2 
2TM ’ a (4 .6)

a—]. Li
t 

-

N—i
I I~’(’~ )I 2 Ifl(Wrn)1

2 (4.7)
rn— i

~ I1(~4m)l 2/ZA t is always small. This is so, for example, in
the first special case of Section 2-—a constant signal. The

test in the second case , a short very strong signal , is
based on

N—i
I

a—i

which is the discrete form of a test suggested in Watson
(1967) for this situation.

Thus , the grouped form of invariant testing is very
close to th. grouped estimation problem of Section 2. Both
benefit from being discussed in terms of finite Fourier trans-
forms. If one ignored the test theory of Beran and just knew
the results of S ction 2, a natural test statistic, to test

______________________________________ - —. —- -— !— ~. - ~~~~~~ - — _~_~__ - - —
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At — constant , A say , would be

N—i i N—i 2I (A t — A) 2 — — ) IA (w 4 )n (~ 4 ) — 1’(w 4)I (4.8)
t—0 N O

where

N—i ~NA if j — O
— I i exp iw~t — {

0 (0 if j~~~O .

But

- I MO)1 2
A (O)n ( O )  — N

I + I-A (O)12

Thus, the first term in (4.8) merely tests the value chosen
A for the constant The remaining terms test whether

is constant so one would use only them for the test. But
this is (4.7). In fact, IA (w

~)I
2/ZAt small , a i i mj f 0,

really means that does not vary much and so defines a
neighbourhood of A

~ 
— constant. Since Beran—type tests are

only locally most powerful invariant, it is not surprising
that the two tests coincide in this c~ase.

Alternatives may be local, intermediat, or distant. The

last concept i. defined in Watson (1974) from probability
distributions on the circle and corresponds to cases like
th. second example at the end of Section 2. The optimal
invariant tests are based on supreme, the associated distri-

butions are hard to find and Fourier analysis seems to be of
no avail. In the present case of (2.15). this suggests the
intuitiv , test——is the greatest of n0, n1, ... , 

~~~~ 
too

larg. to have occurred by chance? Since the n
~
’ s are inde-

pendent Poisson s with the sam. unknown mean on the null
hypothesis , th. test which is independen t of the mean uses
the distribution of the largest frequency in a multinoatal

_____________________________________ _____________________—----. --- i.L_ L _ r

~

. —4..

~ 

- ~~~~~~~~~~~~~~ ~~~~
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of N equal cells when the total frequency 
~~~ 

is kept fixed.
This is not an easy problem. It has been studied by Dudley
(1971). In general then distant tests may be expected to
have the form:

max ~ (t) > C
t— 0, .  . . ,N—l

and to be difficult to use because of distributional troubles.

5. ~piine Estimation.

In Sections 2 and 3, we have looked only at average mean
square error of the estimator At of A

~
. A method which has

a Bayesian type of motivation arises if we insist also that
be a smooth function of t. We treat here the situation

of Section 2. Thus , to the criterion (2 .2 )  we wish to add

C2 
~

From (2.7)

2A 1 2
~ 

At — — I A (~i 4)8 exp -iw4tN ‘

1 2
— — I X (.&~ ) exp —iw 4t (exp iw 4 - 1)

N

By the anal ogu, of (2.8)

N l N ~~~ 2
I (A 2A ) 2 

— — I ~A ftai4)(exp ia4 — J)2~
1 N i

Hence, our criterion will now be: find A (tu~) so that

1-_u- —~ 
— - - - --

~~~~~~~ ---~~~~ --—-— - .. -
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N 2 2 2 2
E 

~ 1A( ~ 4 )n~~ 4 ) — A (1a4)I + C I A (W 4 ) n ( U ~4 ) (exp iw4 — 1) I
1 •~ J .1

— minI (5.1)

In (5.1) , C2 is a smoothing parameter. As C2
~~”, 1(t) must

become flat.
Evaluating (5.1) by making use ol! the result. that lead

up to (2.13), we find that the j—th term in (5.1) is

IA (1aj)1
2
(IA t

+ IA(w~)I 2)(1 + c2Iexp i~~ —

— (A(i~~) + £(w
j
) IA (w~) 1

2 
+ IA (w~) 

2

— (~ A~ + IA(w ~) J 2 ) (1 + ~2 15 itu .j  — 11
4
)IA (wj) 

—

— 

IX (w ~) I 2 2

(!Aj + IA (e~) 1
2) (1 + c2je~~i — 1I~~)

2 IA (w .)1 4
+ IA (wj)I - 

_____________________________

(IA j + IA ((~) 1
2 (1 + c2

~e1’
~.i — j , 4)

(5.2)

where the last term in (5.2) is positive. Thus , the
optimal filter now is given by

IA (w )1 2
— — . (5.3)

+ I A ( ~~~ ) l
2 ) ( l  + c2

~ exp is&~ — 1I~~)

Clearly , the result (5.3) reduces to (2.15) when c2 — 0.
When ~~~~ A (w j ).O unless j — 0 so that the a,,~ become equal
and the estimator becomes constant for t — 1,..., N as pre-
dicted above.

As in Section 2, it is easy to calculate the time f~1ter

.~~
j  

—- 

_ _  _  _ _ _
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coefficients ak using the Fast Fourier Transform.

• The use of

(~
2 A ) 2

to control smoothness is conunon but had we chosen

~

the optimal filter would have been

IX (w )1 2
— 

_________________________ —

~~ 

(5.4)
(lA t + IA (w~) 1

2) C]. + c2~oxp 
j — 11 2P)

and its properties for p > 1 are the same.
Splines in the discrete case wer e f irs t suggested by

Whittaker (1923) and in the continuous case by Schoenberg
(1964). To obtain a Bayesian motivation for (5.1), it is
usual to invent a process for A

~ 
which makes the likelihood

function depend on This would be ~~ if ~~~ for
the various values of t were independently Gaussian with the
same variance. In continuous time, this requires A (t) to be
an integrated Brownian motion.

6. Another Model.

Given the above development , it seems wor thwhi le to show
how the Weiner Filter may be easily derived. This means
changing the model from the N.H.P.P. In fact, we have only
assumed, in the Section 2 derivation of the optimal linear
filter , tha t

E(n t) — At , var (nt ) — At ,cov(n~ ~~~~~~~~~~ 
— 0 , t ~I

(6.1)

Instead , supp ose that

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _- _ _ _ _ _ _ _ _ _ _ _ _   - -  ___ _______
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— A~~.
cov(n

~~l n~+T ) — p ( r )  . (6.2)

Thus , the counts in different intervals may be corre1~ted
but this correlation should depend only upon their spacing.
In this sense , the assumptions are weaker. However, -

p(O)  — var (n
~
) must now be constant and not depend upon

Then (2.13) becomes

EIn(w~)I
2 — IIECntntt exp iwj(t~t’)

— IA (t&~)I
2 + ZIp(t—t’) ex~ iw~(t_t’). (6.3)

Given the fact that we have extended the data to make n~ of
period N, 9(r) in (6.2) must have period N. Thus, p(—].) —

p (N—i) , p (—2) — p (N—2), etc. , so that the covariance matrix
C whose element in the t-th row, t’-th column is p(t-t’) is

an N~N circ~1ant. The eigenvectors of such matrices are

[exp i~~ • 0, cx? iw~ • 1 ...~~ Cx? iw~ (N—l))1 j  0,

N-i. Denoting the corresponding eigenvalues by f(w~). (6.3)

becomes

E I n ( w~ ) I 2 — l A ( w ~~) l
2 + f ( W j ) . (6.4)

In this case, the analogue of (2.15) is seen to be

IA (W )1 2
— —i - . (6.5)

+ f (w~)

This is nothing but the classical result of Wiener for
filtering a stationary process- -except that we have derived
it on the circle.

In order to use (6.5) in practice to derive a good
smoothing formu la , one needs to make a good guess at the
“noise” spectrum f(w ) as well as the signal spectrum

, which was all that was needed in Section 2. This

_ _ _ _ _ _ _ _  - _ _ _  - _ _ _ _ _ _ _ _ _ _ _



20.
is the price of the weaker assumption.

7. An Even More Applied Approach.

A data analyst, knowing that E(nt) — Var ~~~ — A t’
would probably consider y~ - 2~ç which will have approxi-
mately unit variance and mean 2/~~, pr ovided A~ is not small.
In passing a curve through the points (tyt), the analys t
will not be distracted by variance changes. Further will

be approximately Gaussian so it makes sense to pass the

curve through the “center” of the band of points. Finally,

any smoothing method could be considered, without regard to

positivity, since , given the smoothed values, y~ say, a
positive smoothed estimate of A

~ 
is available from

— ; ‘t
2 
. (7.1)

If other transformations such as 21h~ + 3/8 or + in~+l
are used, the formulae replacing (7.1) are obtained similarly.

To counter criticisms, this analyst might object to
(1.2) as a criterion on the grounds that the derivations

A (t) - A(t) are weighted equally despite the fact that
Var(A (t) — 1(t) ) — 0(A(t)). The analyst might also criticize

the notion of optimal smoothing by saying that, since the

true 1(t) is not known, one must try various smoothers on the

data, possibly smoothing less in some stretches than in

others to retain resolution.
It is, of courae, possible to formalize smoothing with

the square roots of the counts. A ’standar d proc edure
would be to use a spline fit, e.g., find — 21~~ to

minimize

* 2 2} (y1 
— 
~~) + K I

The first term is more justifiable now since the y~ have
approximately the same variance about U t . The second term

insists on srioothness of th. f i t t ed  
~~~~~~~~~ 

The K is a tuning

• 
parameter, K - 0 implyIng no smoothing at all, i..., ~ —

_ _ _  

__ 
_
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